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Abstract
We present analytical results for the contribution of electromagnetic fluctuations
in the distribution of interaction energy and pressure in isotropic systems
whose properties depend only on one spatial coordinate. If we neglect the
continuous inhomogeneity introduced here and consider the simplest case of
two macroscopic homogeneous bodies separated by a homogeneous film our
result reduces to the well-known Lifshitz formula. As a first application
of theory, a one-dimensional modulated system with a homogeneous layer
embedded in it is considered and a suitable perturbation theory for this
system is developed. In the main part of this paper we limit the calculations
to the non-retarded case, that is only the calculation of van der Waals
interaction energy is given. As a second application of theory we consider
the van der Waals interaction between two semi-infinite media across a planar
region within which there is a thin film having an arbitrary variation of
the dielectric permittivity. The importance of the precise evaluation of the
transverse magnetic surface mode dispersion relation in inhomogeneous media
is elucidated. For concreteness the influence of the transition layer between
water and lipid in a symmetrical configuration is considered in some detail.
The zero-frequency term and the dispersion-only contribution to the Hamaker
coefficient are given analytically using some approximations and modelling of
the dielectric constants reasonable for these dielectrics at room temperature.
As a whole the results indicate the necessity of performing Lifshitz-type
calculations on realistic inhomogeneous layered models, as are the models
described here, for accurate interaction energy modelling. Of course further
work is needed for real justification of the continuous variation of dielectric
permittivities across phase interfaces.

1. Introduction

In recent years the Casimir effect has attracted a great deal of interest in different areas of
contemporary physics starting from quantized scalar massless field theory [1], going through
physical chemistry of colloids and interfaces [2] and ending with sophisticated biophysical
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objects [3]. The basic result for Casimir effect between real materials in plane parallel
geometry (the celebrated Lifshitz formula) [4] has been widely used in numerous investigations,
simplified on physical grounds to surface-mode dispersion relation analysis only [5, 6, 12],
and generalized by proximity force approximation or by more rigorous approaches [1] to non-
plane parallel geometries. Transverse inhomogeneities such as periodic or statistically rough
surfaces has also received a great deal of attention [7]. Even today a direct generalization
of the Lifshitz approach [4] is still actual for anisotropic, multilayered and other complex
systems [8, 9]. A good example in this direction is the calculation of the Casimir forces in
modulated systems made recently in [10]. Here an appropriate perturbation scheme has been
formulated and valuable estimations for the chemical potential in cholesteric liquid crystalline
films have been obtained. In this paper we focus our efforts on a relatively simple problem:
the calculation of the contribution of electromagnetic fluctuations to interaction energy in an
isotropic system whose macroscopic description depends on the z-coordinate only. Of course
this class of materials contains the simplest non-trivial case of two semi-infinite homogeneous
bodies separated by a homogeneous film as well as the case of laminated multilayered media
where the dielectric function is piece-wise constant in each slab. A brief exposition of general
theory will be given in section 2 and appendix A. Section 3 is devoted to isotropic modulated
systems interacting across a homogeneous layer of finite thickness L. In order to find the van
der Waals interaction energy in closed form here we use the regular perturbation theory for
small modulations (as in [10]). In section 4 a biophysical example is given for two symmetrical
plane-parallel systems ‘lipid/water/lipid’ and ‘water/lipid/water’ by taking into account the
thin transition layer between water and lipid substances where the dielectric permittivity is
continuously varying function of the position. There and in appendix B we discuss the
semiempirical determination of ‘bulk’ dielectric permittivities of the two constituents as well
as the question of approximate additivity or non-additivity in the van der Waals interactions
within these two structures.

2. Electromagnetic fluctuations in an inhomogeneous medium

Our first purpose here is to derive two scalar differential equations and boundary conditions to
them. We will show that these two scalar equations determine the whole spatial information
for the Green’s dyadic function Dlk(�r , �r ′; ξn). According to general theory [4] the tensor Dlk

is needed for calculation of the pressure (the force per unit area) acting in a medium having
z-coordinate dependent dielectric permittivity ε(ω, z). The starting point is the equation for
Dlk(�r , �r ′; ξn):{

ε(z; iξn)
ξ 2

n

c2
δ jl + ∂2

∂x j∂xl
− �3δ jl

}
Dlk(�r , �r ′; ξn) = −4πδ(�r − �r ′)δ jk (2.1)

where �3 is the 3D Laplace operator, x1 = x, x2 = y, x3 = z. Here ε(z) ≡ ε(z; iξn),

ξn = n
2πkT

h̄
, n = 0, 1, 2, . . . (2.2)

where k is the Boltzmann constant, T is the temperature, j = 1, 2, 3, l = 1, 2, 3. Let
D̄lk(�r , �r ′; ξn) be the solution to (2.1) for a hypothetical homogeneous medium having for all z
a scalar permittivity ε(ω, z0). Then we introduce the notations

D̃lk(�r , �r ′; ξn) = Dlk(�r , �r ′; ξn) − D̄lk(�r , �r ′; ξn) (2.3)

D̃H
lk (�r , �r ′; ξn) = rotlμrot′kν D̃μν(�r , �r ′; ξn) (2.4)

where

rotlμ ≡ εlpμ

∂

∂x p
, rot′kν ≡ εksν

∂

∂x ′
s

. (2.5)



van der Waals interactions between bodies having inhomogeneous dielectric permittivities 8915

The force per unit area is given by the following formula:

F(z0) = kT

4π

∞∑′

n=0

{
ξ 2

n

c2
ε(z0)[D̃33(·) − D̃11(·) − D̃22(·)] + D̃H

11(·) + D̃H
22(·) − D̃H

33(·)
}

(2.6)

where (·) ≡ ( �ρ, z0; �ρ, z0) and the prime indicates that the n = 0 term is to be multiplied by
1/2. Due to homogeneity in the x–y plane we introduce the following Fourier transform:

Dlk(�r , �r ′; ξn) =
∫

d2 �q
4π2

ei�q·( �ρ−�ρ′)dlk(�q, ξn; z, z′), �q(qx, qy, 0), �ρ(x, y, 0). (2.7)

A further transformation is needed to replace the matrix d
=

with a new matrix g
=

depending only
on q = |�q| = (q2

x + q2
y)

1/2 and of course of z, z ′, ξn :

ds j = (ST )spgpr(S)r j (2.8)

where

S
=
(�q) = 1

q

( qx qy 0
−qy qx 0

0 0 q

)
, S

=T
(�q) = 1

q

( qx −qy 0
qy qx 0
0 0 q

)
. (2.9)

Then the Green’s dyadic problem (2.1) reduces to

B
=

g
= = 4πδ(z − z′)I

=
(2.10)

where (I
=
)lk = δlk is the unit 3 × 3 matrix and

B
= =

⎛
⎜⎝

−ε(z) ξ 2
n

c2 + ∂2

∂z2 0 −iq ∂
∂z

0 −ε(z) ξ 2
n

c2 − q2 + ∂2

∂z2 0

−iq ∂
∂z 0 −ε(z) ξ 2

n
c2 − q2

⎞
⎟⎠ (2.11)

so that g
=

has only five non-zero elements:

g
= =

( g11 0 g13

0 g22 0
g31 0 g33

)
. (2.12)

The equation for g22(z, z′)[
d2

dz2
− q2 − ξ 2

n

c2
ε(z)

]
g22(z, z′) = 4πδ(z − z′) (2.13)

corresponds to transverse-electric (TE) waves (or s-polarization). At every point z �= z ′ we
require continuity of the function and its derivative:

g22(z − 0, z′) = g22(z + 0, z′),
(

∂g

∂z

)
z−0

=
(

∂g

∂z

)
z+0

. (2.14)

In the same time a jump ε(z − 0) �= ε(z + 0) is admitted. For transverse-magnetic (TM) waves
we derive the following equation for g11(z, z′):

d

dz

(
a(z)

dg11

dz

)
− ε(z)g11(z, z′) = 4π

c2

ξ 2
n

δ(z − z′) (2.15)

where

a(z) = ε(z)

w2(z)
, w2(z) = q2 + ξ 2

n

c2
ε(z) (2.16)
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and the boundary conditions to this equation are

g11(z − 0, z′) = g11(z + 0, z′),
(

a(z)
dg11

dz

)
z−0

=
(

a(z)
dg11

dz

)
z+0

. (2.17)

For the other three functions corresponding to TM waves we derive

g31(z, z′) = − iq

w2(z)

∂g11(z, z′)
∂z

(2.18)

g33(z, z′) = − iq

w2(z)

∂g13(z, z′)
∂z

− 4π

w2(z)
δ(z − z′) (2.19)

d

dz

(
a(z)

dg13

dz

)
− ε(z)g13(z, z′) = −4π iqc2

ξ 2
n

d

dz

(
δ(z − z′)
w2(z)

)
. (2.20)

Our second purpose is to construct for the scalar Green’s functions (like g22(z, z′) for the TE
mode) appropriate analytical representations and finally to evaluate the pressure formula (2.6).
Our results on this problem for the TE mode are collected in appendix A.

3. A modulated system with a homogeneous layer embedded in it

In this section we investigate only the TM mode. In the non-retarded limit (i.e., assuming an
infinite speed of light) the contribution of the TE mode described in appendix A vanishes. First
we give an important result which follows from equations (2.15) and (2.20):

g13(z, z′) = iq

w2(z ′)
∂g11(z, z′)

∂z′ . (3.1)

Formulae (2.6), (2.15)–(2.20) allow us to write the following quite general result:

FTM(z0) = kT

8π2

∞∑′

n=0

∫ ∞

0
dq q I (ξn, q, z0) (3.2)

where

I (ξn, q, z0) = ξ 2
n ε(z0)

c2w2(z0)

(
∂2g̃11(z, z′)

∂z∂z′ − w2(z0)g̃11(z, z′)
)

(z = z′ = z0). (3.3)

As concerns the limit c → ∞, it is evident from (2.15) that g11 ∝ c2/ξ 2
n (the same is true for

g̃11) and in this limit w(z) must be replaced by q . Let us consider now a physical system having
the following distribution of the dielectric permittivity:

ε(iξn, z) =

⎧⎪⎨
⎪⎩

ε + g�ε cos(2q0z), −∞ < z < −L/2

ε3, |z| < L/2

ε + g�ε cos(2q0z), L/2 < z < ∞.

(3.4)

Here |g| < 1, ε = ε(iξn),�ε = �ε(iξn), ε3 = ε3(iξn). This is one-dimensional crystal in
which an inclusion |z| < L/2 with permittivity ε3 = ε3(iξn) is embedded. If the modulation
amplitude g = 0 we have the standard problem of interaction of two identical macroscopic
bodies having permittivity ε = ε(iξn) and separated by a plane parallel slab of thickness L. We
will develop a perturbation theory valid for small modulation taking into account terms which
are linear with respect to g. If −L/2 < z, z ′, z0 < L/2 the full g11 function will be given by
the following expression:

g11(z, z′) = A(z ′)e−w3z + B(z ′)ew3z − 2π
c2w3

ξ 2
n ε3

e−w3|z−z′| (3.5)
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where the sum of the first two terms in (3.5) is exactly the function g̃11(z, z′) and the third term
is the function ḡ11(z, z′). In the leftmost half-space we have

g11(z < −L/2) = Aleft(z
′)y−(z) = Aleft(z

′)ewz (1 + g�ε [bcc(z) + bss(z)]) (3.6)

where Aleft is an arbitrary constant, w = [q2 + ξ 2
n

c2 ε]1/2, c(z) ≡ cos(2q0z), s(z) ≡ sin(2q0z)
and the other two constants in (3.6) are

bc = −1

4
(w2 + q2

0 )
−1

(
2q2

ε
+ ξ 2

n

c2

)
, bs = −1

4

(
w2 + q2

0

)−1
(

2q0q2

εw
− wξ 2

n

q0c2

)
. (3.7)

In the rightmost half-space we have

g11(z > L/2) = Aright(z
′)y−(−z). (3.8)

The four functions of z ′, i.e. A, B, Aleft, Aright, are easily determined from boundary
conditions (2.17) applied at the planes z = ±L/2. After that calculation the result of
equations (3.2) and (3.3) was calculated. We will give this result for the van der Waals pressure
only, i.e. in the limit c → ∞. Actually the pressure depends on the thickness L and temperature
T , but not on z0 itself. It is convenient to introduce instead of q-integration an x-integration
where 2q L = x , and for the pressure F(L, T ) we will have

F(L, T ) = F(z0) = kT

8π L3

∞∑′

n=0

∫ ∞

0

x2�2e−x

1 − e−x�2
dx (3.9)

where

� ≡ �(iξn, q0L, x) = ε3 − εeff

ε3 + εeff
, εeff = −

[
ε(z)∂g11(z)

qg11(z)∂z

] (
z = L

2
+ 0

)
. (3.10)

In the case of a modulated system of the type (3.4) we have

εeff = ε + g�ε
x

x2 + 4q2
0 L2

[
x cos(q0L) − 2q0L sin(q0L)

]
. (3.11)

Analogous oscillatory effects with respect to the factor q0L for anisotropic modulated
systems have recently been obtained in [10]. It can be easily seen that the pressure F(L, T )

can be expressed in terms of the energy per unit area G(L, T ) where

G(L, T ) = kT

8π L2

∞∑′

n=0

∫ ∞

0
x ln[1 − e−x�2] dx, F(L, T ) = ∂G/∂L (3.12)

even if � is x and L dependent as is in our case. This result also holds and in the nonsymmetric
case ε(z) �= ε(−z) if we replace �2 → �1�2, where � j(iξn, L, x), j = 1, 2 can be easily
calculated.

4. van der Waals interactions involving lipid and water layers

Inspired by the recent calculation of van der Waals interactions involving lipid vesicles [13]
we consider once again the symmetrical model (3.4) but with modified leftmost and rightmost
half-spaces. For z > L/2 we write

ε(iξn, z) = ε1(iξn, z) (4.1)

and for z < −L/2 we define ε(iξn, z) = ε1(iξn,−z). Between these inhomogeneous half-
spaces we once again assume we have a homogeneous layer with dielectric permittivity ε3(iξn).
It turns out that formula (3.12) will have place provided that the symbol � in it is calculated in
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the new conditions. We denote the unknown solution for g11(z) in the rightmost half-space by
ϕ(z) (see equation (2.15) in electrostatic approximation) and we define our model as follows:

∂2ϕ

∂z2
− q2ϕ + ∂ ln ε1(z)

∂z

∂ϕ

∂z
= 0,

L

2
� z � L

2
+ D (4.2)

ϕ

(
z >

L

2
+ D

)
= Crighte

−qz . (4.3)

Equation (4.3) tells us that we have assumed ε1(iξn, z) = ε1(iξn) in the whole region
z > L/2 + D, whereas in a transition layer (L/2, L/2 + D) with thickness D the dependence
of ε1(iξn, z) on z is arbitrary. In equation (4.2) we can make the substitution

y(z) = ε1(z)∂ϕ

ϕ(z)∂z
(4.4)

so that the following first order differential equation is formulated for y(z):

∂y

∂z
= ε(z)q2 − y2(z)

ε(z)
. (4.5)

For our purposes it is sufficient to know only y(L/2), where

y

(
L

2

)
= −qε1 −

∫ L/2+D

L/2

[
q2ε1(z) − y2(z)

ε1(z)

]
dz. (4.6)

If D/L 	 1 we can write

y

(
L

2

)
= −qε1 − q2

∫ L/2+D

L/2

[
ε1(z) − ε2

1

ε1(z)

]
dz. (4.7)

We can introduce the effective thickness Deff of the transition layer with the following definition
(see also formula (3.11)):

y(L/2)

q
= −ε1 − q Deff. (4.8)

Then the function � which appears in the formula for the interaction energy (3.12) will be

� = ε3 − ε1 − q Deff

ε3 + ε1 + q Deff
≈ ε3 − ε1

ε3 + ε1

(
1 − 2

q Deffε3

ε2
3 − ε2

1

)
. (4.9)

This formula together with (4.7), (4.8) is consistent with the two well-known cases where exact
analytical solutions are available. The first case is for a triple film ε1(L/2 < z < L/2 + D) =
ε2 [14] when

� = �32 + �21e−2q D

1 + �32�21e−2q D
, � j i ≡ ε j − εi

ε j + εi
(4.10)

and the second case is for the exponential profile ε1(L/2 < z < L/2 + D) = �e−λz [15] when

Deff = D(ε3 − ε1)
2

θε3
, θ ≡ ln

ε3

ε1
. (4.11)

For concreteness in evaluating equation (4.7) we choose the following linear profile:

ε1(z) = ε3 + (ε1 − ε3)

D

[
z − L

2

]
(4.12)

so that the dielectric permittivity is continuous in the whole space (see figure 1).
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z

3

1

D DL

ε

ε

ε 1ε

Figure 1. Schematic representation of the profile of the dielectric function ε(z) = ε(−z) considered
in section 4. The two phases |z| < L

2 and |z| > L
2 + D are separated by two transition layers

both having thickness D. The dielectric permittivity in the region L
2 � z � L

2 + D is given by
equation (4.12).

Other analytical representations of ε1(z) important for real systems can be found in the
recent paper by Podgornik and Parsegian [17]. In our case we have

Deff = D

ε1 − ε3

{
ε2

1 − ε2
3

2
+ ε2

1 ln
ε3

ε1

}
. (4.13)

If we denote x = 2q L as the meaning of x in (3.11) and also a = D/L as well as χ ≡ ε3
ε1

, we
will have

�2 =
(

χ − 1

χ + 1

)2

+ x
aχ

(χ + 1)2

(
1 + 2 ln χ − χ2

)
. (4.14)

The energy per unit area (3.12) is usually written in the following canonical form:

G(L, D, T ) = − A(a, T )

12π L2
, A(a, T ) = −3kT

2

∞∑′

n=0

∫ ∞

0
x ln(1 − �2e−x) dx (4.15)

where the Hamaker coefficient A(a, T ) is given by a double (s, n) summation:

A(a, T ) = 3kT

2

∞∑′

n=0

∞∑
s=1

(χ − 1)2s

(χ + 1)2s

[
1 + 2a

χ(1 + 2 ln χ − χ2)

(χ − 1)2(χ + 1)

]
(4.16)

and terms of the order O(a2) are neglected in the above three formulae. In appendix B we
explain how (4.15) can be evaluated for the system lipid/water/lipid (abbreviated as lwl) at room
temperature kT = 0.404×10−20 J. This means ε3 = εwater, ε1 = εlipid. Because the coefficient
before a in (4.16) is not invariant upon the replacement χ → χ−1 the system water/lipid/water
(abbreviated as wlw) is also considered (ε3 = εlipid, ε1 = εwater) in appendix B. The result of
calculations depicted in figure 2 can be approximated with the following expressions:

Alwl = (0.62–0.58a) × 10−20 J, Awlw = (0.62–2.25a) × 10−20 J. (4.17)

The important question of approximate additive dispersion molecular interactions in
these systems is also discussed in appendix B. The zero-frequency term and separately the
dispersion-only contribution to the Hamaker function (4.16) are also given there.
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a

Awlw

Alwl

A.10  J20

0.4

0.6

0.05 0.1

Figure 2. The function A(a, kT = 0.404 × 10−20 J). For thin transition layers such that
0 � a = D

L � 0.1 the theory predicts a linear decrease of the Hamaker coefficient A(a, T )

with increase of a, which is different for lwl and wlw systems.

5. Conclusion

In this paper we have studied the effect of continuous spatial inhomogeneity on Casimir forces
and especially on van der Waals interactions in various planar geometries. Prominent examples
of isotropic modulated system (section 3) and lipid layers interacting across water (section 4)
are considered in some detail. In section 4 we have calculated approximate analytical results
for the interaction of lipid acting across a slab of water with thin intermediate layers having
dielectric properties varying smoothly between the properties of both media. If a (see (4.17))
is estimated to be approximately 0.1 [15] the effect of inhomogeneity can be relatively large—
between 10 and 30%. This result indicate the necessity of performing Lifshitz-type calculations
on realistic layered models without the simplifying assumption that dielectric properties change
discretely at the material interfaces, being constant within each material region.

Appendix A. The contribution of TE modes to the force formula (2.6)

If we rewrite equation (2.13) as(
d2

dz2
− w2(z)

)
g22(z, z′) = 4πδ(z − z′) (A.1)

where

w(z) =
[

q2 + ξ 2
n

c2
ε(iξn, z)

]1/2

(A.2)

we can easily derive its general solution:

g22(z, z′) = A(z ′) f+(z) + B(z ′) f−(z) + 4πcTE[
f+(z) f−(z ′)θ(z − z′) + f+(z ′) f−(z)θ(z′ − z)

] (A.3)
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where θ(z > 0) = 1, θ(z < 0) = 0, A(z ′), B(z ′) are arbitrary functions of z ′, and

cTE = [
f ′
+(z) f−(z) − f+(z) f ′

−(z)
]−1

(A.4)

is a constant which does not depend on z. Here and in the whole paper F ′(z) ≡ dF(z)
dz . The two

linearly independent solutions to the homogeneous equation

d2 f±(z)

dz2
− w2(z) f±(z) = 0 (A.5)

have at large positive values of z asymptotics of the form f+(z) ≈ e−wz, f−(z) ≈
ewz, limz→∞ w(z) = w > 0. The general definition (2.3) tells us that

g̃22(z, z′) = g22(z, z′) + 2π

w(z0)
exp[−w(z0)|z − z′|]. (A.6)

Also for transverse-electric waves we have

D̃(TE)
i j (�r , �r ′; ξn) =

∫
d2 �q
4π2

ei�q ·( �ρ−�ρ′)
(

δi j − qi q j

q2
− ni n j

)
g̃22(q, ξn; z, z′) (A.7)

where �n(0, 0, 1). The tedious and bulky calculations which follow from (A.7), (2.3)–(2.6) lead
to the following formula for Casimir pressure (TE mode):

F (TE)(z0) = kT

8π2

∞∑′

n=0

I (TE)
n (z0) (A.8)

where

I (TE)
n (z0) =

∫ ∞

0
q

{[
∂2

∂z∂z′ − w2(z)

]
g̃22(z, z′)

}
(z = z ′ = z0) dq. (A.9)

In the Lifshitz case, ε(z < 0) = ε1, ε(0 < z < L) = ε3, ε(L < z) = ε2 for z0 ∈ (0, L), we
have

g̃22(z, z′) = 2π

w3�

(
b1(z

′)ew3z + b2(z
′)e−w3z

)
(A.10)

b1(z
′) = e−w3z′ +

(
w3 + w1

w3 − w1

)
ew3z′

(A.11)

b2(z
′) = ew3z′ +

(
w3 + w2

w3 − w2

)
e−w3z′+2w3 L (A.12)

� = 1 − e2w3 L (w3 + w1)(w3 + w2)

(w3 − w1)(w3 − w2)
. (A.13)

Then equation (A.9) reduces to the TE-part of the Lifshitz formula. The result for all z0 depends
only on the thickness L but not on z0 itself. If we denote the interaction energy per unit area by
E(L, T ), so that F(L, T ) = ∂ E(L, T )/∂L, we have

E(L, T ) = kT

2π

∞∑′

n=0

∫ ∞

0
q ln[1 − e−2w3 L�1�2] dq (A.14)

where

�1 = w3 − w1

w3 + w1
, �2 = w3 − w2

w3 + w2
. (A.15)

In the Lifshitz case the result for the TM mode is the same, with the replacement in (A.15)
w j → ε j

w j
. Of some academic interest is the use of general formulae (A.3), (A.6), (A.9) in the

case when ε(z) is a continuous function of z for all −∞ < z < ∞. In this case in (A.3), of
course, we have A(z ′) = B(z ′) = 0. The two solutions of equation (A.5) can be found in the
frame of the WKB approximation under well-defined restrictions (see [11]). In this paper we
do not explore this interesting possibility.
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Appendix B. Analysis of Hamaker function (4.16). Semiempirical determination of ε(iξ)

for lipid and water

We will accept the following approximation for the Hamaker function (4.16):

A(a, T ) = An=0(a, T ) + A∗(a) (B.1)

where

An=0(a, T ) = 3kT

4

(
1 + 2aχ0(1 + 2 ln χ0 − χ2

0 )

(χ0 − 1)2(χ0 + 1)

) ∞∑
s=1

s−3

(
χ0 − 1

χ0 + 1

)2s

(B.2)

A∗(a) = 3h̄

4π

∫ ∞

0
dξ

(
χ − 1

χ + 1

)2 [
1 + 2a

χ(1 + 2 ln χ − χ2)

(χ − 1)2(χ + 1)

]
. (B.3)

B.1. Lipid–water–lipid system

This system when a = 0 has been studied in [13]. The dielectric permittivity of water and
lipid DPPC (dipalmitoylphosphatidylcholine) are described in semiempirical approximation
with formulae of the type [16]

ε(iξ) − 1

ε(iξ) + 1
= αe−βξ . (B.4)

We accept for water α = 0.280, β = 1.715 × 1017 s rad−1 and for lipid α = 0.363, β =
1.920×10−17 s rad−1. These four numbers are sufficient for calculations in (B.3), but for (B.2)
we also need the dielectric permittivities at zero frequency, which are: for water ε(0) = 80 and
for lipid ε(0) = 2.14. If we accept the notations

B1,3 = α1,3 exp[−β1,3ξ ] (B.5)

the function

χ(ξ) − 1 = 2(B3 − B1)

∞∑
n=0

(B3 − B1 + B1 B3)
n (B.6)

will be represented by a power series of the form

χ − 1 = 2(B3 − B1) + 2(B3 − B1)
2 + 2(B3 − B1)(B2

3 + B2
1 − B1 B3) + · · · (B.7)

neglecting fourth order terms (α4
1 , α

4
2, α1α

3
2, α

3
1α2, α

2
1α

2
2), which is valid under the condition

that α1,2 < 1, β1 ≈ β2. Then formula (B.3) will be given by the following approximate
expression:

4π

3h̄
A∗(a) = (1 − 2a)

∫ ∞

0
dξ
(
B2

3 + B2
1 − 2B1 B3

)

− 2a
∫ ∞

0
dξ
[

1
3 B3

3 − B1 B2
3 + B2

1 B3 − 1
3 B3

1

]
(B.8)

A∗(0) = A33 + A11 − 2A13, Ai j ≡ 3h̄

4π

αiα j

βi + β j
(B.9)

is the macroscopic analogue of the compound Hamaker constant obtained from pair-wise
summation of additive dispersion molecular interactions [13, 16]. The cubic terms which
appear in the second integral in (B.8) correspond to a non-additivity correction due to the
nonhomogeneity of the system (a �= 0). Using the values given after formula (B.4) we obtain
for the dispersion-only contribution

A∗(a) = 0.31(1 + 0.17a) × 10−20 J (B.10)
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and for the zero-frequency term (B.2) at kT = 0.404 × 10−20 J

An=0 = [0.31–0.63a] × 10−20 J. (B.11)

The sum of (B.10) and (B.11) gives the first estimation for the lwl system given in
formula (4.17).

B.2. Water/lipid/water system

For the water/lipid/water system the calculations are similar to the derivations leading to (B.10)
and (B.11) but now the coefficients before a are different:

A∗(a) = (0.31–1.3a) × 10−20 J, An=0 = (0.31–0.95a) × 10−20 J. (B.12)

A comparison with the simple result (B.9) clearly shows that pair-wise summation is not
justified in systems with continuously varying dielectric functions.
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